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ABSTRACT

New technologies offer promising possibilities in biodiversity monitoring to increase standardization of 
sampling methods and improve cost efficiency. Among the former, uncrewed aerial systems (UAS) are widely 
used today to produce orthomosaics of a particular area. At the same time, computer-intensive methods 
for automated object detection within images have increased accordingly. While they are widely used in 
science, applied nature conservation makes little use of these methods. The current study aimed to test 
the applicability of UAS in combination with a deep-learning based object detection workflow in Schütt-
Graschelitzen, a small-scale Natura 2000 protected area near Villach, Austria. For this purpose, we trained 
a YOLO_v8 algorithm with flowers of Gladiolus illyricus from an orthomosaic. The orthomosaic was split 
into about 1000 equally sized tiles with 80 tiles used for training and 20 tiles used for validation. For ground 
truthing, the individual inflorescences were counted manually. Our main findings indicated moderate model 
performance with the training and validation dataset and also with new data. Moderate – rather than strong 
– performance is likely a result of too little training data. While object detection worked considerably well, 
background revealed too high variability, making reliable classifications challenging. Comparing the different 
work steps (without UAS mission) suggests that creating a representative training dataset is the most time-
intensive part of the workflow. For small areas and a single survey, this is likely not efficient compared to 
traditional field sampling methods. However, its efficiency increases with each resurvey event, as pretrained 
deep-learning models developed during prior monitoring cycles can be reused. This can reduce the amount 
of training data required in a subsequent survey. Additionally, UAS- and deep-learning based monitoring can 
help at sites with high sensitivity to trampling and favors large study areas, as its efficiency increases with 
the sample size area.

Deep-learning basiertes Populationsmonitoring der gefährdeten Sumpfgladiole Gladiolus illyricus:  
Erkenntnisse zur Implementierung eines technologiebasierten Biodiversitätsmonitoring

ZUSAMMENFASSUNG

Neue Technologien bieten vielversprechende Möglichkeiten für Biodiversitätsmonitoring, um die Standardis-
ierung von Erhebungen zu erhöhen und die Kosteneffizienz zu verbessern. Zu diesen Technologien gehören 
unbemannte Luftfahrtsysteme (UAS), die heute weit verbreitet sind, um Orthomosaike eines bestimmten Ge-
biets zu erstellen. Gleichzeitig haben rechenintensive Methoden zur automatisierten Objekterkennung in Bil-
dern entsprechend zugenommen. Während diese Methoden in der Wissenschaft mittlerweile weit verbreitet 
sind, werden sie im angewandten Naturschutz wenig genutzt. Die aktuelle Studie hatte zum Ziel, die Anwend-
barkeit von UAS in Kombination mit einem Deep-Learning-basierten Objekterkennungs-Workflow im Gebiet 
Schütt-Graschelitzen, einem kleinräumigen Natura 2000-Schutzgebiet in der Nähe von Villach, Österreich, zu 
testen. Zu diesem Zweck haben wir einen YOLO_v8-Algorithmus mit Blütenfotos von Gladiolus illyricus aus 
einem Orthomosaik trainiert. Das Orthomosaik wurde in etwa 1.000 gleich große Kacheln aufgeteilt, wobei 
80 Kacheln für das Training und 20 Kacheln für die Validierung verwendet wurden. Um die Treffsicherheit 
des Modells zu bestimmen wurden die am Orthomosaik sichtbaren Infloreszenzen manuell gezählt. Unser 
Hauptergebnis zeigt eine mittelmäßige Modellleistung mit dem Trainings- und Validierungsdatensatz, sowie 
mit Objektdetektierungen in neuen Daten. Dies ist wahrscheinlich auf zu wenig Trainingsdaten zurückzufüh-
ren. Die Objektdetektierung lieferte dabei zufriedenstellende Ergebnisse, aber vor allem bei der Klassifika-
tion von Hintergrund (Bilder ohne ein Vorkommen des Zielobjekts) hatte das Modell Probleme. Der Vergleich 
der verschiedenen Arbeitsschritte (ohne UAS-Mission) legt nahe, dass die Erstellung eines repräsentativen 
Trainingsdatensatzes der zeitintensivste Teil des Workflows ist. Für kleine Gebiete und eine einzelne Erhe-
bung ist dies wahrscheinlich nicht effizient im Vergleich zu traditionellen Feldprobennahmemethoden. Allerd-
ings steigt die Effizienz mit jeder erneuten Erhebung, da vortrainierte Deep-Learning-Modelle, die während 
vorheriger Überwachungszyklen entwickelt wurden, wiederverwendet werden können. Dies kann die Menge 
der benötigten Trainingsdaten bei einer nachfolgenden Erhebung reduzieren. Von Vorteil kann der Einsatz von 
UAS und automatisierter Bilderkennung insbesondere sein, wenn ein Untersuchungsgebiet empfindlich auf 
Betritt ist.
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INTRODUCTION

Halting global biodiversity loss is among the greatest challenges of our time. Taking 
directed management actions, therefore, is of utmost importance for the global nature 
conservation movement [1]. Evidence-based decisions are required to improve the 
current state of biodiversity [2]. This evidence is chiefly derived by determining the status 
and trends of biodiversity indicators, allowing future projections [3]. Knowledge on long-
term trends is particularly important for taking directed actions [4, 5]. A lack of experts and 
limited financial resources are still among the main reasons for the scarcity of biodiversity 
time series [6]. New technologies offer promising opportunities to increase the frequency 
and consistency of biodiversity monitoring programs. Notably, technological approaches 
can help make expert knowledge more broadly available and allow its application over 
large spatial areas. However, application of expert knowledge in nature conservation 
is often a limitation because of potentially high costs, communication challenges with 
stakeholders, and data processing limitations [7].
In the present work, we tested two technologies in combination – aerial images by 
uncrewed aerial systems (UAS) and a deep-learning image detection algorithm – that 
offer promising opportunities to improve biodiversity monitoring programs. UAS are 
used today in nature conservation to assist with habitat classification [8] and to monitor 
mammals in open landscapes [9], among other applications. Combined with AI-based 
image detection algorithms, a high degree of automatization is possible. The hardware 
and software requirements can be accommodated today on a standard personal computer 
[10]. However, the use of these technologies in applied conservation by environmental 
agencies, regional governments, NGOs, and environmental consultancy firms remains 
limited. This is partly because certain official reporting requirements (e.g., Habitats 
Directive Article 17) do not currently consider new technological advancements. Lack of 
awareness about these technological opportunities, as well as uncertainty regarding the 
required personal and financial resources to implement them, are relevant factors [7, 11].
The primary goal of this study was to assess a workflow for applying a deep-learning 
algorithm on imagery of a rare plant species gathered from a UAS mission. Specifically, we 
aimed to determine whether reliable detection of an easily recognizable target is possible 
without requiring advanced technological expertise. We determined which aspects of 
the workflow are the most time-intensive. To address these questions, we evaluated the 
ability of the algorithm to automatically detect and count flowers of Gladiolus illyricus, 
wild gladiolus, in a protected area southwest of Villach, Austria, using UAS imagery.

METHODS & WORKFLOW

The study area was located in the Alpine biogeographical region, southwest of Villach, 
Austria in a Natura 2000 area called Schütt-Graschelitzen (site code AT2120000, https://
biodiversity.europa.eu/sites/natura2000/AT2120000; Figure 1). The study object was 
an easily recognizable plant species, G. illyricus, that is known in Austria only within 
the wet meadows of the “Gladiolenwiese” of Dobratsch Nature Park, Carinthia. The 
Gladiolenwiese is owned by a conservation NGO and is specifically managed to support 
the habitat of G. illyricus. Management practices include controlled mowing to prevent the 
encroachment of reed (Phragmites australis), tall herbaceous plants, and woody species. 
We developed a UAS-generated RGB orthomosaic from images taken at flight altitude 
30 m and horizontal speed of 5 m s-1 by an aerial vehicle (drone: DJI Matrice 600 RTK; 
camera: Sony Alpha 7R II with 50mm objective). The drone flight was performed during 
peak flowering of G. illyricus on June 8th, 2022 at noon. Weather conditions consisted of 
scattered clouds resulting in mixed light conditions (mix of direct and diffuse sunlight). 
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The forward/side overlap of images was 80/80. Post-processing of the orthomosaic was 
conducted using Metashape Version 1.7.4 build 13028 (Agisoft LLC, St. Petersburg, Russia) 
software and resulted in a ground sampling distance of 0.85 cm pixel-1.

For ground truthing, flowers of G. illyricus were counted manually on the orthomosaic. The 
manual identification of G. illyricus from the orthomosaic was conducted using QGIS 3.30 
[12]. For automated detection of inflorescences of G. illyricus we used a YOLO_v8 [13, 14] 
algorithm in a Python environment. Model performance was assessed on the object (label) 
level. We used the three key metrics: normalized confusion matrix, F1 score, and mean 
average Precision (mAP) [15]. In the normalized confusion matrix each row represents 
the distribution of predicted classes for a given true class. The normalized confusion 
matrix is further used to calculate precision (ratio of true positives to total number of 
predicted positives) and recall (ratio of true positives to total number of actual positives). 
Precision and recall are further used to calculate the F1 score at different confidence 
levels. The F1 score helps understand how well a model handles false positives or false 
negatives at different confidence levels [15]. Plotting precision against recall allows 
quantification of the area under the resulting precision-recall curve. This area reflects 
the average precision (AP). The metric mAP50 suggests that a detection is considered 
correct when the Intersection over Union (IoU) exceeds 0.5. IoU is calculated as the ratio 
of the area of overlap between the ground truth bounding box and the predicted bounding 
box to the area of their union [16]. For mAP50, a detection is considered correct if 50% 
of the predicted and true bounding boxes are overlapping. mAP50−95 reflects a more 
comprehensive assessment by calculating the average precision across multiple IoU 
thresholds, typically from 0.5 to 0.95 in steps of 0.05.

Our basic workflow is represented in Figure 2 and consisted of the following steps:
1. Generating an orthomosaic of the entire study area using orthophotos from the UAS 

mission (Figure 2a).

Fig. 1

Figure 1:  
Overview of the study 
area. The area of the 
actual UAS mission is 
indicated in red.

Abbildung 1: 
Überblick des 
Untersuchungsgebiet. 
Der Bereich indem 
die UAS-Mission 
durchgeführt wurde 
ist in roter Farbe 
dargestellt.
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2. Cropping the orthomosaic into equally sized tiles of 448 × 448 pixels per tile  
(Figure 2b). This step was conducted using R [14], with the packages raster [17], terra 
[18], sf [19, 20], and stars [21]. As the orthomosaic was not perfectly rectangular, 
white parts containing no information were included in the tiles.

3. Selecting training images: A subset of 100 tiles was selected (representing around 
10% of the overall tiles) reflecting a medium to high presence of G. illyricus flowers 
(different light conditions, different background), which were marked accordingly 
with bounding boxes (Figure 2c). This task was performed using the online software 
tool CVAT (Computer Vision Annotation tool, https://app.cvat.ai). This tool allows 
uploading of training images, marking the target objects and saving the output in the 
format required for YOLO algorithms (i.e., one folder containing the training image 
and a second folder with a .txt file including labels and coordinates of the target 
objects).

4. Randomly split the 100 tiles into training (80 tiles) and validation data (20 tiles).

5. Setting up the YOLO model with the training data in Python. 

6. Using the trained YOLO model for detection of target objects in new images  
(Figure 2d).

RESULTS & DISCUSSION

In the current study, comparison between automatically detected flowers and manual 
counting indicated a difference of 12% more automatic detections (5,444 flowers) compared 
to manual verification (4,866 flowers). The normalized confusion matrix, however, showed 
a high ratio of correct detections for the validation data (0.84) and no false detections 
of G. illyricus flowers (Figure 3). The final model showed satisfactory prediction values 

Fig. 2

Figure 2:  
Basic steps for 
deep-learning based 
monitoring of Gladiolus 
illyricus. Letters a-d 
denote work steps. a) 
UAS orthomosaic of the 
study area; b) the UAS 
orthomosaic cropped 
into equally sized tiles 
(e.g., 448 × 448 pixels); 
c) 100 tiles were used 
for creation of a training 
dataset; and d) after 
training, the model was 
used for detection of 
new target objects. 
The numbers in step 
d denote confidence 
scores of the trained 
model.

Abbildung 2: 
Grundlegende Schritte 
für das Deep-learning 
basierte Monitoring 
von Gladiolus illyricus. 
Die Beschriftung von 
a-d spiegelt einzelne 
Arbeitsschritte wider. 
a) UAS-Orthofoto des 
Untersuchungsgebiets; 
b) UAS-Orthomosaik 
wurde in gleich große 
Kacheln (z. B. 448 × 
448 Pixel) unterteilt; c) 
100 Kacheln wurden 
zur Erstellung eines 
Trainingsdatensatzes 
verwendet; d) nach 
dem Training wurde das 
Modell zur Erkennung 
neuer Zielobjekte 
eingesetzt. Die Zahlen 
in Schritt d geben den 
Confidence Score des 
Modells wieder.
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(Table 1). The model had high precision (0.88; very few false detections), moderate recall 
(0.80; most of the objects are detected), and good performance (mAP50 = 0.89). Model 
performance dropped at stricter IoU thresholds (mAP50-95 = 0.50). Although a majority of 
model parameters were within an acceptable range, the fact that 12% more flowers were 
detected by the model compared to manual counting indicated problems with overfitting 
and a small training dataset. In addition, the confidence scores of detections tended to 
be rather low (< 0.40; Figure 2.d, Figure 4). Moreover, the model lacks the ability to detect 
background at its current stage. Even an increase of background training data by 120 tiles 
couldn’t solve this problem. This indicates that the background shows high variability, a 
factor that needs to be addressed in future work. Poor background differentiation explains 
the low confidence scores for the detected flowers.

Tab. 1

Performance parameter Model performance

mAP50 0.89

mAP50-95 0.50

Precision 0.88

Recall 0.80

Fitness 0.54

Table 1:  
Model performance 
parameters of the final 
used YOLO_v8 model.

Tabelle 1: 
Modell performance 
Parameter des finalen 
YOLO_v8 Modells

Fig. 2

Figure 3:  
Normalized confusion 
matrix of the YOLO_v8 
model for 20 tiles of the 
validation dataset.

Abbildung 3: 
Normalisierte 
Konfusion Matrix des 
YOLO_v8 Modells für 
die 20 Kacheln der 
Validierungsdaten.
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The selected tile size of 448 × 448 pixels produced a total of about 1,000 tiles from the 
area of interest. In terms of time, preparation of the training data demanded the greatest 
amount of resources. The process of marking and labeling the 100 training tiles took about 
24 hours, or three full working days. The amount of time needed for creating training 
datasets is the most critical point for deep-learning-based monitoring techniques and 
must be evaluated carefully. Noteworthy, for monitoring a single site one time only, the 
time effort might be too high. On the other hand, if long-term monitoring is planned with 
several resurveys over an area of interest of several hectares, the approach will be more 
cost-effective.
One criterion that was not formally assessed in this study was conducting the UAS 
mission itself, including material costs and time requirements. For mission planning, a 
wide range of models and software is available, as well as software for post-processing 
of aerial images. UAS missions are a widely used earth observation approach that is often 
subcontracted to private companies at competitive prices. Terrain characteristics (e.g., 
steep or rugged terrain) and the size of the area of interest may affect the ease at which 
a flight campaign can be accomplished; thus, flight campaigns represent a cost factor 
that must be taken into account. A notable advantage of a UAS mission is its airborne 
nature. Traditional methods of accurately surveying plant populations in natural habitats 
often require physically entering the area, which can be hazardous to the field worker 
and potentially disruptive to the environment. These problems can be avoided by using 
UAS technology. However, UAS may disturb non-target species through the generation 
of noise or because the equipment resembles predatory species. Local flight regulations 
and restrictions must be carefully followed.

Using only 100 training images can be considered too few for training data (cf. [22]). 
Given the complexity and variation of biological data, this low volume of training data 
is insufficient to cover the variation expected under natural conditions. High variation 
in biological datasets can be considered the rule, not the exception, and should be 
accounted for when planning a biodiversity monitoring program. Sources of variability 

Fig. 4

Figure 4:  
F1 Confidence Curve  
of the YOLO_v8 model.

Abbildung 4: 
Konfidenz-Kurve  
des YOLO_v8 Modells
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include changing light and weather conditions during UAS missions, variable background, 
potentially different sensors used in different missions, and variability in the study object 
itself. Given natural variability, a considerably higher volume of training data (500-1,000 
training images) is recommended [23]. This implies further that for a new monitoring cycle 
a smaller set of supplemental training images should be considered. The amount of new 
training images needed for a resurvey wasn’t tested in detail and will be addressed in 
future research. However, methods like transfer learning can help reduce the number of 
new required training images [24, 25]. In the current study, where only one UAS mission 
was conducted over a small area of interest, weather-related sources of variability were 
mitigated and all equipment was used according to internal standard protocols.
Marking the object of interest prior to the UAS flight is important in situations when similar 
species or objects of similar appearance and/or color are present at the study site. This is 
needed for the preparation of the training dataset to ensure that only the target object is 
used for training. In our case, G. illyricus was the only pink-colored flower present in the 
meadow from a bird’s-eye view. Therefore, we were able to confidently mark our object 
of interest on the tiles of the orthomosaic. Accurate marking of flowering plants could be 
realized through the use of a differential GPS, but for small clustered objects such as the 
flowers in this study, marking could be imprecise. Labeling target objects in the field could 
be a major time-consuming part of the overall workflow, requiring labeling of some 500-
1,000 individual points. The spatial arrangement of target objects in the field (scattered 
vs. clustered) affecting walking distances, and the terrain itself are additional factors that 
should be considered. 
To address our research question, we trained the deep-learning algorithm to detect G. 
illyricus inflorescences. This allowed quantification of phenological trends but provided 
no direct estimation of the population, since the number of flowers varies by individual 
plants. This is an important consideration when preparing training data. To estimate 
population size, one approach could be to calculate the mean number of flowers per 
individual and use this value to estimate the number of plants present based on number 
of inflorescences detected [26]. While population size is ecologically relevant, for the 
purposes of producing a model, individual flower clusters can be used to train the 
algorithm. 
Overall, we conclude that the YOLO_v8 model is a promising tool for reliable detection 
of inflorescences of G. illyricus from orthomosaics. At the current stage, however, the 
model shows several limitations that have to be resolved before further use in UAS-based 
monitoring. The most critical point is the collection of sufficient training data and testing 
the model on novel data sets [27]. Insufficient training hinders reliable estimation of the 
model performance. Nevertheless, given that a majority of G. illyricus inflorescences 
were detected while false detections were lacking, the basic utility of the model was 
confirmed.
Additional challenges relate to the necessary practical aspects of performing UAS 
missions, post-processing of the data, and training a deep-learning algorithm. From 
our perspective, the obstacles have decreased considerably in the past decade but 
still require considerable technological understanding and programming skills. Though 
the current challenges are undeniable, we see the growing potential for developing 
the workflow for future biodiversity monitoring. One major advantage arises from the 
reusability of pre-trained deep-learning models, decreasing the amount of training data 
required in a follow-up survey. Embedded in a smart biodiversity monitoring program, 
adequately addressing the challenges stemming from this technology can help to improve 
standardization and increase the spatial coverage and temporal frequency of surveys.
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