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ABSTRACT

Automated waterfowl detection from uncrewed aerial system (UAS; “drones”) imagery has become an 
important task for various environmental applications such as wildlife monitoring, nature conservation, and 
habitat mapping. This paper presents a digital framework for automated waterfowl detection using high-
resolution UAS imagery and artificial intelligence/machine learning (ML). Several UAS missions in Brenndorf, 
Carinthia, Austria, were conducted simultaneously with a traditional ground-based waterfowl field survey 
by an experienced expert. Several data pre-processing steps were applied to optimize digital image data 
pipelines for the generation of high-quality ML training data. The You Only Look Once (YOLO) open-source 
computer vision and ML object detection model was used to detect waterfowl in the UAS imagery. A transfer 
learning approach from a large waterfowl study at the University of New Mexico in collaboration with the U.S. 
Fish and Wildlife Service was used to further improve the model’s performance. Validation results showed 
promising performance with 80% and 83% classification accuracy on the waterfowl classes ‘duck’ and ‘swan’, 
respectively.  Finally, a spatial projection model and a visualization approach for the ML-based detection and 
classification results on a map were implemented. The proposed digital framework for automated waterfowl 
detection provides promising results for standardization and a new paradigm for waterfowl counting to 
support and extend traditional wildlife monitoring.

Ein digitales Framework für die automatisierte, nichtinvasive Wasservogelerfassung in 
Kärnten basierend auf hochauflösenden UAS-Bildern und maschinellem Lernen

ZUSAMMENFASSUNG

Die automatische Erkennung von Wasservögeln anhand von Bildern unbemannter Luftfahrtsysteme (UAS) 
ist zu einer wichtigen Aufgabe für verschiedene Umweltanwendungen geworden, z. B. für die Überwachung 
von Wildtieren, den Naturschutz und die Kartierung von Lebensräumen. In diesem Beitrag wird ein digitaler 
Rahmen für die automatische Erkennung von Wasservögeln mit Hilfe von hochauflösenden Drohnenbildern 
und künstlicher Intelligenz vorgestellt. Mehrere UAS-Einsätze in Brenndorf im Bezirk Völkermarkt in 
Kärnten wurden zeitsynchron mit einer klassischen bodengestützten Wasservogelkartierung durch einen 
erfahrenen Fachmann durchgeführt. Mehrere Datenvorverarbeitungsschritte wurden angewandt, um digitale 
Bilddatenpipelines für die Generierung qualitativ hochwertiger KI-Trainingsdaten zu optimieren.  YOLOv5, ein 
Modell aus der You Only Look Once (YOLO)-Familie von Computer-Vision-Modellen für die Objekterkennung, 
wurde verwendet. Um die Leistung des Modells weiter zu verbessern, wurde ein Transfer-Learning-Ansatz 
aus einer großen Wasservogel-Studie, die an der University of New Mexico im Auftrag des U.S. Fish and 
Wildlife Service durchgeführt wurde, übernommen und adaptiert. Die Validierungsergebnisse zeigten eine 
vielversprechende Leistung mit einer Klassifizierungsgenauigkeit von 80 % und 83 % auf Artenebene für 
„Ente“ und „Schwan“. Ein räumliches Projektionsmodell für die Darstellung der Ergebnisse der durch KI 
detektierten einzelnen Wasservogelindividuen in Kartenform zeigt die räumliche Verteilung der Wasservögel 
im Projektgebiet. Der vorgeschlagene digitale Rahmen für die automatische Erkennung von Wasservögeln 
liefert vielversprechende Ergebnisse für die Standardisierung und ein neues Paradigma für die Zählung von 
Wasservögeln, um die traditionelle Feldkartierung zu unterstützen und zu erweitern.

INTRODUCTION

Human survival is dependent upon biodiversity. Genes, species, and ecosystems 
sustain our food systems and protect us from disease and climate change. Many Earth 
ecosystems are stressed or ruined, and many animals, plant, and microbial species 
are at risk of extinction. Expected human population growth, resource extraction, and 
CO2 emissions through the 2020s means that this destruction of life is likely to increase 
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unless there is immediate, global, and sustained protection and regeneration of nature. 
Waterfowl serve as indicators of biodiversity and ecological health for a diverse set 
of ecosystems. Waterfow such as ducks, geese and swans are especially impacted 
by global changes as they rely on many different habitats throughout their annual 
migratory routes. Traditionally, researchers and volunteers worldwide count waterfowl 
in the field by surveying either from the ground or in more remote habitats even from 
crewed aircrafts. The problem with such types of surveys is that they are imprecise, 
as ground-based observations are limited by field of view, site accessibility and cause 
disturbance to wildlife when animals are approached by humans or loud, low-flying 
aircraft [1].
Wagner and Petutschnig [2] presented the results of a traditional ground-based waterfowl 
census performed in January 2021 by 85 volunteering observers in 27 counting districts 
at lakes and river segments in Carinthia, Austria. Based on a standardized taxonomy, 
the total number of observed species was aggregated for each counting district. This 
census is part of the International Waterbird Census [3], which is a global monitoring 
program consisting of an annual synchronized count of all waterbird species. The 
counts are organized during the non-breeding season when many species congregate 
in wetlands.
Automated waterfowl detection from uncrewed aerial systems (UAS) imagery is a 
promising opportunity for wildlife management, nature conservation, and habitat 
mapping [4]. Accurate detection and classification of waterfowl can provide valuable 
information on population dynamics, migratory patterns, and habitat use, which 
can aid in the development of effective conservation strategies [5]. In recent years, 
deep learning models have achieved state-of-the-art performance in various object 
detection and classification tasks, including waterfowl detection from UAS imagery 
[6]. One of the most widely used deep learning models for object detection is YOLO 
- You Only Look Once [7], which is a single-shot detector that can detect and classify 
objects in real-time. YOLO has undergone several iterations, with the latest version 
being YOLOv5 (Ultralytics Inc., Los Angeles, CA, USA) at the time of implementation 
of this study. In this paper, a pipeline for automated waterfowl detection from UAS 
imagery is presented. The pipeline consists of three key stages: (1) data capture and 
pre-processing; (2) machine learning (ML) model training and validation; and (3) map 
projection of detection results. In the data capture and pre-processing stage (1), a UAS 
mission was conducted in Brenndorf, Carinthia, Austria, resulting in a large number 
of overlapping images. Metashape (Agisoft LLC, St. Petersburg, Russia) software for 
photogrammetric processing of digital images was used to reduce the image overlap, 
and Labelbox (Labelbox Inc., San Francisco, CA, USA) facilitated data annotation. To 
prepare the data for training, the annotation format was converted from JSON to the 
required text file format, and image cropping was performed to improve the object-
to-image size ratio. For the training and validation stage (2), transfer learning was 
applied using a label set and YOLO model weights from the University of New Mexico 
(UNM). The model’s weights [8] served as the starting point for detecting waterfowl 
in Brenndorf. In the map projection stage (3), a projection model was constructed to 
visualize the detections on a map. By completing these three stages, we developed an 
effective pipeline for automated waterfowl detection from UAS imagery using YOLO. 
The main contribution of this paper is to critically reflect upon and provide valuable 
insights into the effectiveness of this ML-based approach for waterfowl detection and 
its further potential for applications in wildlife management, nature conservation, and 
habitat mapping.
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MATERIALS AND METHODS

Surveying waterfowl using UAS equipped with high-resolution cameras represents 
a novel solution to the long-standing problems of how to efficiently survey waterfowl 
populations. The general method is to program a flight path for a UAS that goes above a 
popular spot where waterfowl gather, and have it take pictures of the flock as it flies over. 
UAS are smaller and quieter than crewed aircraft, so they can fly fairly low over flocks of 
waterfowl without stressing the birds. They can also conduct a survey more quickly than 
humans can, and over a much broader area [9].
In the course of this feasibility study, a new innovative workflow for non-invasive water 
bird counting based on high-resolution aerial drone imagery and artificial intelligence (AI) 
was designed and evaluated according to scientific criteria. Carinthian test sites for the 
prototypical implementation and validation of this approach were the Bleistätter Moor at 
the eastern end of Lake Ossiachersee and the ecological compensation measure of the 
Austrian Federal Railways (ÖBB) in Brenndorf at the Drava River.
The new proposed workflow consists of five phases (Figure 1). Phase 1 addresses the 
overall requirements and the conceptual study design. Phase 2 relates to image data 
acquisition, in which UAS missions are planned to capture high-resolution individual 
image data. Phase 3 provides analysis-ready data for ML such as pre-processing of 
images and annotation of selected images. Phase 4 relates to training and validation, 
which involves feeding the output of the previous two phases (images and annotations) 
into a ML algorithm (YOLO) with the goal of measuring the ML ability to accurately detect 
and classify objects. Phase 5 presents results where ML detections are visualized in 
the form of maps that show projected captured images and vector points indicating the 
detected locations and spatial distribution of waterfowl in the study area.

Requirements and Conceptual Study Design

In a first step a comprehensive requirement analysis was performed in close collaboration 
with waterfowl domain experts of the Carinthian Provincial Government (Dept. 8 – 
Environment, Nature Conservation and Climate Protection Coordination) in order to 
design the concept of the study. This consisted of joint meetings to select the study site, 
the expected waterfowl species characteristics, and any domain-specific and legal 
constraints that needed to be considered to safely perform the UAS missions and field 
survey. A key objective was that the UAS-based image capture and the traditional ground-
based waterfowl survey be performed at the same date, time of the day and duration in 
order to be able to compare the results and exclude as much potential methodological 
sampling bias as possible.
The study site for this conceptual study was an ecological compensation measure and 
substitute biotope of the substitute biotope of the ÖBB in Brenndorf at the Drava River 

Fig. 1

Figure 1: Framework 
for machine learning-
based waterfowl 
detection.  
Source: own figure

Abbildung 1: Struktur 
für maschinelles Lernen 
zur Erkennung von 
Wasservögeln. 
Quelle: eigene 
Abbildung
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located in the district of Völkermarkt in Lower Carinthia. Data acquisition took place 
on October 6th 2022 in the eastern part of the biotope over an area of approx. 115,000 
m² (Figure  2). This site was proposed by the domain experts because of the expected 
presence of significant numbers of waterfowl on the anticipated field survey date in 
October 2022. In order to perform drone missions in a responsible and safe manner, all 
legal constraints in terms of the common European drone regulations [10] [11] as well as 
domain-specific legal regulations in the context of nature conservation and protected 
areas (K-NBG 2019) [12] were considered.

Field Data Collection and Ground Truthing

The collaborative data collection involved two main methodologically distinct activities, 
which were performed in the same defined study area simultanously, (1) the use of UAS 
to capture high-resolution images, and (2) the execution of a traditional, ground-based 
field survey for comparison purposes performed by an experienced and well-trained 
waterfowl domain expert.

UAS Mission Planning

Based on the conducted research and evaluations, the optimal flight altitude for UAS to 
capture high-resolution images for individual waterfowl identification and detection was 
identified empirically to be 30m above water level and present waterfowl respectively. 
Various flight altitudes were tested and compared in a previous internal study at the 
Bleistätter Moor using different UAS platforms such as the Fixed-Wing UAS BRAMOR PPK, 
Small Multirotor UAS DJI Phantom4 RTK, and Very Small Multirotor UAS DJI Mavic 2 Pro. 
The selected flight altitude of 30m was empirically determined based on the judgement of 
a waterfowl domain expert. This visual “scaring off” assessment was performed on-site 
directly before starting the image data capture in Brenndorf. This procedure ensured a 
non-invasive drone-based data capture without disturbing any waterfowl present in the 
study area. Such low flight altitude results in high spatial image resolution of 8 mm per pixel 
and therefore improved detection and recognition of individual waterfowl characteristics 
by domain experts as well as by ML. In order to provide an up-to-date basemap for the 
ground truthing field survey, a UAS mission was performed close in time two weeks before 

Figure 2: Bird’s eye 
view of the Brenndorf 
study site (10/6/2022). 
Source: own figure

Abbildung 2: 
Vogelperspektive auf 
das Untersuchungs-
gebiet Brenndorf 
(6.10.2022).
Quelle: eigene 
Abbildung

Fig. 2
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the collaborative data capture survey in order to provide a high resolution basemap 
orthophoto representing the actual state and context information of the environment 
at the study site. This additional step was necessary as available aerial images were 
outdated, captured at a different time of the year with different states of vegetation and 
water level, and were therefore unsuitable as high quality survey basemaps.

UAS Missions & Orthophotomosaics

Three missions were performed with two different UAS on two dates. Table 1 provides an 
overview of the UAS missions performed at the study site. All missions were performed 
in the open category in visual line of sight (VLOS) conditions. A DJI Phantom 4 multirotor 
system with a real-time-kinematic (RTK) positioning system was used for data collection, 
allowing cm-accuracy survey grade georeferencing of the individual captured images 
(Figure 3). A smaller DJI Mavic Pro 2 multirotor system was used to collect a video and 
several perspective views for documentation purposes.

All missions were performed based on a mission plan determining the flight altitude and 
the overlap between collected images in terms of in-flight direction (90% front-lap) as 
well as between neighboring flight lines (90% side-lap). The Phantom 4 RTK performs 
the mission automatically based on the defined GNSS waypoints of the mission plan. 
Once a mission plan is defined, it can be stored and reproduced to guarantee compliant 
UAS mission parameters in case of multiple acquisitions in the same study site, e.g. for 
monitoring and change detection purposes.

Test site Date Drone Flight Altitude Comment

Brenndorf 9/20/2022 Phantom 4 RTK 120m
Orthophoto for creating base map for 

expert field mapping; high image overlap

Brenndorf 10/6/2022 Phantom 4 RTK 30m
ML image capture & orthophoto; high 

image overlap

Brenndorf 10/6/2022 Mavic Pro 2 100m
Capture of perspective images and 

video for documentation purposes

Tab. 1 Table 1: Overview of 
the performed UAS 
missions

Tabelle 1: Übersicht 
über die durchgeführten 
UAS-Missionen

Figure 3: Start of 
Phantom 4 RTK 
multirotor UAS 
system at Brenndorf 
(10/6/2022).  
Source: own figure

Abbildung 3: Start 
des Phantom 4 RTK 
Multirotor UAS Systems 
in Brenndorf (10/6/2022). 
Quelle: eigene 
Abbildung

Fig. 3
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Based on the individual UAS images captured by the Phantom 4 RTK, Metashape was 
used to photogrammetrically process individual digital images to generate high-resolution 
3D point clouds, a digital surface model, and a high-resolution orthophotomosaic. The 
orthophotomosaic resulting from the overview mapping mission prior to the collaborative 
data collection was provided as an analogue basemap to domain experts and was used 
for the ground truthing field survey. The orthophotomosaic derived from the same day as 
the collaborative data collection was performed and was used as the most up-to-date 
base map for visualizing the ML results.

Traditional ground-based waterfowl field survey

Traditional waterfowl field mapping was performed by a domain expert in order to validate 
and assess the results of the ML detection and classification process. A highly experienced 
field expert, following a field data protocol and moving along the water’s edge, recorded 
the location of all observed and identified waterfowl on the high-resolution, up-to-date 
analogue basemap. An important issue was the simultaneous field survey within the same 
time window as the UAS missions and the mapping of the observed waterfowl from the 
ground based on visual sight observations with the support of professional binoculars. In 
order to provide a proper base map for the manual drawing of location and the species 
of the observed waterfowl, an additional UAS mission was performed 14 days before 
the actual ML image data capture campaign took place. This preparatory UAS mission 
was performed at a higher flight altitude of 120m with high overlap (90% forwardlap, 90% 
sidelap).

Analysis-Ready Data for Machine Learning

In order to train and run a ML model, data quality is a key issue. Several image pre-
processing steps are necessary to provide analysis-ready data for the following steps 
of ML model development and model training. In this section, a detailed account of the 
pre-processing of individual UAS images is described, as well as the annotation process 
employed for Brenndorf. Specifically, the annotation approach utilizing a combination of 
non-expert laymen and annotation performed by domain experts in the field are presented. 
Labelbox is a professional software solution for the annotation and labeling of data for ML 
applications. The test site-specific taxonomy for labelling and annotation was defined by 
waterfowl domain experts and implemented in Labelbox for annotation.

Image Data Pre-processing

In total, 958 aerial images with a resolution of 8mm/pixel were captured by the UAS 
(Phantom 4 RTK) with a high overlap, which is a pre-requisite for the photogrammetric 
generation of high-resolution orthophotomosaics for representation and documentation 
of the current environmental state of the test site at Brenndorf. However, a significant 
drawback is that high image overlap will result in a significant amount of redundant image 
information. Therefore, Metashape was used to select non-overlapping images using the 
“Reduce Overlap” feature to provide a non-redundant, significantly smaller set of 171 
images for more time-efficient annotation and ML classification.
Another key pre-processing step necessary to provide analysis-ready data involved the 
transformation of annotations into a format that is compatible with the selected ML model 
YOLO (see section 2.4 for more detail). Annotations in Labelbox are typically provided in 
JSON format, but YOLO necessitates the presence of an associated text file for each image 
that shares the same name and contains the class of the detected object and normalized 
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values for the, bounding boxes’ coordinates, and dimensions. The second pre-processing 
step involves dividing each image into smaller tiles, which is required due to the specific 
nature of our data. Our images have dimensions of 4864x3648 pixels, and the targeted 
bounding boxes are relatively small, with an average size of 92x101 pixels. As a result, the 
ratio of objects to the total image size is only 0.052%. This low ratio can be problematic, 
as YOLO typically resizes each image to 416x416 for faster training. Therefore, dividing 
the image into tiles serves to maintain the object’s aspect ratio while resizing each tile to 
416x416. Each image was tiled into 30 tiles with each tile having a size of 810x729, leading 
to a (target object size/input image size) ratio of 1.5%. Figure 4 demonstrates the image 
cropping performed.

It is important to note that not all tiles produced during the cropping process are used for 
AI training. This is because, in most cases, only a small fraction of tiles actually contains 
waterfowl. Therefore, YOLO is only provided with the tiles that have annotated objects, 
and the remaining tiles are discarded.

Annotation

Annotation was performed by experienced domain experts using a detailed taxonomy 
of 10 classes of waterfowl and by non-expert laymen focusing on only two “high-level” 
classes, duck and swan. The following classes were identified by the domain experts: 
mallard (in German: Stockente), mute swan (Höckerschwan), “duck” (Ente), tufted duck 
(Reiherente), gadwall (Schnatterente), waterfowl (Wasservögel), juvenile mute swan 
(Höckerschwan_jung), Eurasian wigeon (Pfeifente), common teal (Krickente), and great 
white egret (Silberreiher).
This annotation taxonomy scheme, including the hierarchical structure of species 
categories (e.g., duck with mallard and common teal) and the inclusion of juvenile 
versions of certain species (e.g., mute swan with mute swan juvenile), makes the training 
process for an ML model more challenging. This is because increasing the number of 
waterfowl species that the machine must discriminate without increasing the dataset 
necessarily means giving the machine fewer training samples per class. Therefore, it is 
important to carefully evaluate the suitability and quality of the provided annotations for 
training a ML model. In some cases, the available annotations may not provide sufficient 
information or may introduce too much complexity, making it difficult for the model to learn 
effectively. Based on these considerations, it may be necessary to seek out alternative 
annotation schemes in order to improve the suitability of the data for training. Thus, it is 
not necessarily the case that the annotations are completely unsuitable for training, but 

Fig. 4

Figure 4: Demonstration 
of the image cropping 
process.  
Source: own figure

Abbildung 4: Demon-
stration des Bildaus-
schnittverfahrens. 
Quelle: eigene  
Abbildung
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rather that their limitations and potential drawbacks need to be carefully evaluated and 
addressed in order to maximize their effectiveness for training of a ML model.

Machine Learning Model

The ML algorithm chosen to be used in this project is called YOLO. YOLO is a powerful 
state-of-the-art, real-time open source Convolutional Neural Network (CNN) object 
detection algorithm introduced by Redmon et al (2015).

Waterfowl knowledge base transfer

The Center for the Advancement of Spatial Informatics Research and Education (ASPIRE) 
at UNM collaborates with US Fish and Wildlife Service (USFWS) to develop an algorithm 
to automatically count and identify birds from drone imagery. Sa’Doun et al. [13] used 
YOLO v3 on a USFWS dataset for waterfowl detection and classification. The USFWS data 
volume in this US study was 13 images with 2908 unique birds. YOLO v3 was updated since 
2020 to reach YOLO v5 at the time of implementing this study. Therefore, upgrading to YOLO 
v5 was necessary since YOLO v5 was found to have better accuracy on the same dataset 
[14]. The other and most important upgrade is to feed YOLO v5 with a much larger dataset 
than the USFWS in 2020. UNM used Zooniverse crowdsourcing service to generate more 
than 150 thousand new annotations to train YOLO v5 [8], [15]. We have used the weights 
learned by the UNM model as an initial configuration for our training. The primary benefit 
of this transfer learning is that it allows to train our models faster and with less data [16], 
while still achieving higher levels of accuracy compared to training from scratch on the 
Brenndorf dataset.

YOLO Training and Validation

In total, 467 objects were annotated in the Brenndorf dataset. While not considered large 
by ML standards, this dataset is indicative of the sample size and diversity obtainable from 
a single-day survey. To assess the model’s performance, the dataset was divided into two 
subsets: a training set and a validation set. The validation set was derived as a subset of 
the Brenndorf data, intentionally withheld from the YOLO model. The validation images 
were manually selected where 17 tiles were chosen with different waterfowl composition, 
duck only, swan only, and mixed waterfowl. By comparing YOLO’s predictions against 
the ground truth of the validation set, we measured the accuracy of the model using 
a metric called mean Average Precision at Intersection over Union (IoU 0.50) (mAP50) 
[17]. This metric measures how well the model detects objects in images. The ‘ground 
truth’ refers to the actual data showing where objects are located in the images, and we 
compare these true locations to the locations predicted by YOLO. The IoU is a measure 
of how much the predicted bounding box overlaps with the actual bounding box, with 
an IoU of 0.50 indicating a 50% overlap. Precision measures how many of the detected 
objects are correct, while recall measures how many of the actual objects were detected. 
mAP50 combines these aspects into a single number, summarizing the model’s overall 
performance by averaging how well it balances correct detections (precision) at a 50% 
overlap threshold. After mAP is calculated for all objects in the validation set, a confusion 
matrix is created that shows the number of true positive, true negative, false positive, and 
false negative identifications of each waterfowl class, which correspond to commission 
and omission errors. Commission errors occur when the model incorrectly identifies an 
object (false positive), while omission errors occur when the model fails to detect an 
actual object (false negative).
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Machine Learning Result Visualization

A key issue is to bring the results of the ML model back to the “real world,” i.e. to project 
the YOLO detection results onto a map. This provides not only statistical, non-spatial 
information about the number of waterfowl detected, but also spatial information about 
the overall geographic distribution of waterfowl in the study area. To achieve this, a 
procedural framework for converting the detection output into geographic coordinates 
must be established and consists of two distinct steps:

1-  The georeferencing of individual UAS images.
2-  The projection of YOLO object detections and its estimation of real-world coordinates.

Map Projection of detected waterfowls

The automated image georeferencing pipeline relies on the following input parameters:
1-  Focal length of the camera
2-  Sensor size
3-  Flight altitude
4-  Image size
5-  GNSS coordinates of the drone
6-  3D drone rotation angles (pitch, roll, yaw)

The information about the degrees of freedom can be extracted from the XML and Exif 
metadata that are attached to an image. The metadata will then be incorporated to 
calculate a transformation matrix to translate pixel locations to GNSS coordinates. Two 
Python libraries were used: CameraTransform and GDAL. CameraTransform was used to 
build a camera model to calculate the transformation matrix from pixel to GNSS, whereas 
GDAL was used to apply the transformation to the image to generate a raster layer in 
projected map coordinates. Figure 5 shows the principle of image georeferencing and 
Figure 6 shows our results from this process.

Fig. 5

Figure 5: Image 
georeferencing 
process. 
Source: own figure

Abbildung 5: Prozess 
der Georeferenzierung 
von Bildern. 
Quelle: eigene 
Abbildung
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YOLO detections come in a normalized format. For each image where YOLO detected 
objects, a standardized text file containing detection information was produced. Two 
conversions are required here for georeferncing the detection results:

1-  Convert YOLO’s normalized detections of tiles to original image pixel coordinates,
2-  Convert pixel locations in the original image to GNSS coordinates (point vector). 

Table 2 represents the vector points of detection sorted in the attribute table. Based on 
the tile name and the size of the tile image it is possible to infer the specific section of the 
original image to which the tile corresponds by examining its suffix. A reverse calculation 
is then performed and the pixel locations in the original image are retrieved. Figure 7 
demonstrates normalized tile detection to original image pixel conversion.

Then, the transformation model from CameraTransform is used to calculate geographic 
coordinates. GeoPandas [18] is then used to generate vector points from the derived 
coordinates.
By completing these steps, YOLO detections can be mapped, allowing further visualization 
and analysis of their spatial distribution. The spatially explicit visualization of automated 
waterfowl detections provides, in addition to plain numbers and non-spatial statistics, 
other important insights into distribution patterns, potential species interactions and 
behaviors, as well as qualitative and quantitative comparisons with traditional field survey 
observations.

Figure 6: Georeferenced 
and projected individual 
UAS image tiles. 
Source: own figure

Abbildung 6: 
Georeferenzierte und 
projizierte einzelne 
UAS-Bildkacheln. 
Quelle: eigene 
Abbildung

Table 2: Example of 
attribute table for the 
generated vector point 
shapefile

Tabelle 2: Beispiel einer 
Attributtabelle für das 
erzeugte Vektorpunkt-
Shapefile

Fig. 6

Class X Y Confidence (%) Latitude Longitude Original Image

swan 2702 3371 92.3 46.6350604 14.6000256 100_0627_0438.JPG

duck 4657 2728 82.1 46.6356269 14.6003050 100_0627_0448.JPG

duck 2203 282 79.9 46.6354206 14.6002799 100_0628_0002.JPG

Tab. 2
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RESULTS

Our results include the observed and mapped locations of waterfowl from the water’s 
edge identified by a domain expert performing a traditional field survey, the annotation 
process, the ML classification, and finally the spatial map-based visualization of the 
automatically identified waterfowl.

Traditional waterfowl survey – Field mapping

Figure 8 shows the results of field mapping with hand-drawn point locations on a 
provided map of the observed waterfowl species at Brenndorf. Table 3 gives a summary 
of the observed waterfowl species at Brenndorf. In total, 209 individual waterfowl were 
detected by one experienced expert in the context of the traditional ground-based field 
survey.

Figure 7: Normalized tile 
detections to original 
image pixel conversion

Abbildung 7: 
Umrechnung von 
normalisierten 
Bildkacheln in 
Originalbildpixel

Figure 8: Example of 
hand-drawn locations 
of observed waterfowl 
species from traditional 
field mapping by an 
experienced domain 
expert at Brenndorf. 
Field observation was 
performed within the 
same time frame as 
UAS image capture. 
Source: own figure

Abbildung 8: Beispiel 
für handgezeichnete 
Standorte der 
beobachteten 
Wasservogelarten 
aus der traditionellen 
Feldkartierung durch 
einen erfahrenen 
Fachmann in Brenndorf. 
Die Feldbeobachtung 
wurde im gleichen 
Zeitrahmen wie die 
UAS-Bilderfassung 
durchgeführt. Quelle: 
eigene Abbildung

Fig. 7

Fig. 8
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Annotation

The final dataset for annotation consisted of 171 non-overlapping images containing 
waterfowl. A total of 434 waterfowl were annotated by the domain experts. The 
classes duck and waterfowl were introduced for complex cases where a clear species 
identification was not possible. The introduction of the duck and waterfowl classes 
by domain experts highlights the challenges associated with accurate species-level 
identification in waterfowl imagery. This practical approach ensured comprehensive 
data collection while acknowledging the limitations of current identification methods. The 
decision to review ambiguous cases further emphasizes the commitment to data quality 
and the potential for future expert refinement. The overall distribution of domain expert 
annotation results is shown in Table 4.

Table 3: Summary of 
the observed waterfowl 
species distribution as 
result of the expert field 
mapping at Brenndorf

Tabelle 3: Zusam-
menfassung der 
beobachteten Was-
servogelartenverteilung 
als Ergebnis der 
Experten-Feldkartierung 
in Brenndorf

Table 4: Domain 
expert taxonomy 
and annotation 
distribution. The class 
duck serves as an 
overview class where 
a detailed duck species 
classification can not 
be achieved. The class 
waterfowl represent 
a detection, but no 
further classification 
was possible for the 
annotator

Tabelle 4: Taxonomie 
eines Experten 
und Verteilung der 
Anmerkungen. Die 
Klasse Ente dient als 
Übersichtsklasse, 
wenn eine detaillierte 
Klassifizierung der 
Entenarten nicht 
möglich ist. Die Klasse 
Wasservogel stellt 
einen Nachweis dar, 
aber eine weitere 
Klassifizierung war für 
den Kommentator nicht 
möglich

Common name

Latin English German Count

Anas platyrhynchos mallard Stockente 51

Cygnus olor mute swan Höckerschwan 47

Mareca strepera gadwall Schnatterente 42

Aythya fuligula tufted duck Reiherente 35

Anas crecca common teal Krickente 8

Calidris pugnax ruff Kampfläufer 8

Podiceps cristatus great crested grebe Haubentaucher 4

Phalacrocorax carbo great cormorant Kormoran 3

Larus michahellis yellow-legged gull Mittelmeermöwe 2

Gallinago gallinago common snipe Bekassine 2

Mareca penelope Eurasian wigeon Pfeifente 2

Mergus merganser goosander Gänsesäger 1

Ardea alba great white egret Silberreiher 1

Ardea cinerea grey heron Graureiher 1

Aythya ferina common pochard Tafelente 1

Anas acuta northern pintail Spießente 1

Total count 209

Tab. 3

Common name

Latin English German Count Share (%)

Anas platyrhynchos mallard Stockente 156 35.9

Cygnus olor mute swan Höckerschwan 101 23.3

Anatinae duck* Ente* 60 13.8

Aythya fuligula tufted duck Reiherente 52 12.0

Mareca strepera gadwall Schnatterente 34 7.8

- waterfowl* Wasservogel* 12 2.8

Cygnus olor mute swan juvenile Höckerschwan Jung 10 2.3

Mareca penelope Eurasian wigeon Pfeifente 7 1.6

Anas crecca common teal Krickente 1 0.2

Ardea alba great white egret Silberreiher 1 0.2

434 100.0

Tab. 4
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The same Brenndorf dataset was also annotated by non-expert laymen with the goal to 
annotate at the species level, i.e. non-expert laymen were able to distinguish between two 
classes of waterfowl: duck and swan. In total, 467 waterfowl were annotated by laymen, 
indicating that they were able to count and identify the same amount of waterfowl as 
domain experts. However, it should be noted that the laymen were not able to automatically 
distinguish between all the species classes as effectively as the domain experts. Non-
expert laymen annotation distribution is shown in Table 5.

Machine Learning Classification

We chose a 7% training/validation split to maximize the training data available for model 
development. The Brenndorf dataset for ML classification comprises 5130 tiles (171 x 
30), out of which 242 tiles contained bird annotations. Thus, 17 tiles were allocated for 
validation. Within these tiles, a total of 38 waterfowl were present, including 10 swans out 
of 114 and 28 ducks out of 353.
This approach ensured that the model is robust and effective in projecting waterfowl 
locations on a map. A larger validation set would have reduced the training data, potentially 
compromising model accuracy. As the size of our dataset grows in the future, the validation 
set size can be increased for more robust evaluation without compromising training 

Table 5: Non-expert 
laymen “high-level” 
taxonomy of waterfowl 
and their distribution

Tabelle 5: „High-
Level“-Taxonomie der 
Wasservögel und ihre 
Verteilung durch Laien

Figure 9: Confusion 
matrix representing 
validation results. 
Green: True positive 
(correct detection and 
classification). Yellow: 
True negative (correct 
detection but wrong 
classification). Black: 
Undetected. Red : 
Background detected 
as waterfowl.  
Source: own figure

Abbildung 9: 
Konfusionsmatrix 
zur Darstellung der 
Validierungsergebnisse. 
Grün: Wahr positiv 
(korrekte Erkennung 
und Klassifizierung). 
Gelb: Wahr negativ 
(korrekte Erkennung, 
aber falsche 
Klassifizierung). 
Schwarz: Unerkannt. 
Rot: Hintergrund als 
Wasservogel erkannt.  
Quelle: eigene 
Abbildung

Species Count Share (%)

duck 353 75.6

swan 114 24.4

467 100.0

Tab. 5

Fig. 9
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effectiveness. Throughout the training process, 20 epochs were conducted. The results 
are presented in Figure 9, which exhibits the confusion matrix obtained from the model 
evaluation. The confusion matrix revealed that all ducks and swans in the validation set 
were accurately detected and classified (28/28 ducks and 10/10 swans). Nonetheless, the 
model exhibited a tendency to misclassify background elements as waterfowl, resulting 
in 7 false detections of ducks (25%) and 2 false detections of swans (20%). Consequently, 
the accuracy of the model on the validation data set can be calculated as 28/35 = 80% for 
the class duck and 10/12 = 83.3% for the class swan. Although the size of the validation 
set is relatively small, it is important to note that it is currently sufficient to complete the 
projection pipeline. However, it is acknowledged that a larger validation set would be 
more beneficial. In the future, the incorporation of a significantly larger volume of data 
may further improve the accuracy and reliability of the model.
Figure 10 shows samples of the classification results demonstrating perfect detection and 
classification for each class as well as background false classification.

Map-based Visualization

Figure 11 shows the spatial distribution of waterfowl that were annotated on individual 
image tiles in Labelbox. Such annotation data can be used not only for ML training and 
validation purposes, but also for collaborative mapping of waterfowl based on high-
resolution UAS imagery.

Fig. 10

Fig. 11

Figure 10: Correct 
detection and 
classification of 
class swan (a); 
Correct detection and 
classification of class 
duck (b); Background 
objects misclassified 
as ducks or swans (c). 
Source: own figure

Abbildung 10: Korrekte 
Erkennung und 
Klassifizierung der 
Klasse Schwan (a); 
Korrekte Erkennung 
und Klassifizierung 
der Klasse Ente (b); 
Hintergrundobjekte, die 
fälschlicherweise als 
Enten oder Schwäne 
klassifiziert wurden (c). 
Quelle: eigene 
Abbildung

Figure 11: Spatial 
distribution of labels 
annotated in Labelbox. 
Source: own figure

Abbildung 11: 
Räumliche Verteilung 
der in der Labelbox 
kommentierten Labels. 
Quelle: eigene 
Abbildung
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Figure 12 shows the YOLO detection results and spatial distribution of the two high-level 
waterfowl classes duck and swan in the project area in the late morning of October 
6, 2022. In addition, the current environmental conditions of the habitat in terms of 
vegetation phenology, vegetation structure, riparian morphology, and water conditions 
are documented by a high-resolution orthophotomosaic that serves as a base map.

SUMMARY AND DISCUSSION

In this study, we presented a framework for non-invasive automated waterfowl detection 
using the state-of-the-art machine learning CNN YOLO and high-resolution UAS imagery. 
The pipeline involved several stages, each contributing to the overall effectiveness of 
the process. The pipeline developed here serves as a proof of principle rather than a 
fully automated and ready-to-use application. Data acquisition was the initial stage of 
the pipeline, where we utilized UAS to capture high-resolution images for waterfowl 
detection. By conducting UAS missions at a flight altitude of 30m in the Brenndorf test 
site, we obtained a non-invasive dataset that formed the basis for subsequent stages. 
Following data acquisition, the collected images underwent data pre-processing to 
optimize their suitability for training and validation. We employed Metashape software 
to reduce overlap within the image set and a tiling scheme to increase the object-to-
image ratio. Image data were annotated using Labelbox and converted into text file 
format for YOLO analysis, preparing it for the training stage. The AI training and validation 
stage incorporated the use of YOLOv5 and a transfer learning approach by leveraging 
knowledge from a previous project at UNM that utilized YOLOv5 for waterfowl detection 
and classification on a large dataset. This approach yielded promising results on our 
small dataset, with the model achieving high classification accuracy of 80% and 83% for 
the high-level classes duck and mute swan, with all errors relating to commission caused 
by false detection of landscape objects (e.g., grass clumps) as waterfowl.
Table 6 provides a summary of the overall results of this pilot project. The automated 
machine learning-based detection and classification with YOLO shows highly promising 
results for two “high level” classes with high detection and classification accuracies. 

Fig. 12

Figure 12: YOLO 
detection results at 
Brenndorf. 
Source: own figure

Abbildung 12: YOLO-
Erkennungsergebnisse 
in Brenndorf. 
Quelle: eigene 
Abbildung



Carinthia Nature Tech (2024) | Volume 1 | Issue 1 | pages 29–47	 44

Overall accuracy decreased dramatically when considering a more complex taxonomy, 
which can be explained by the lack of a sufficient amount of training data, especially for 
rare species.

Test Site Brenndorf 
10/6/2022

Number of ML 
classes

Number of labels
Detection 

Accuracy (%)
Classification  
Accuracy (%)

Non-expert Laymen 2 467 94.4 85

Domain Experts 10 434 24.9 14.7

Test Site Brenndorf 
10/6/2022

Number of field 
classes

Number of field 
observations

Expert Field Survey 16 209

More than twice as many individual waterbirds were identified based on the high-
resolution UAS imagery collected concurrently with the traditional ground-based expert 
field survey. It is important to critically reflect upon and understand the advantages and 
challenges of both the traditional field survey and the proposed ML-based framework. 
We identify six key points: (1) Field observers and UAS operate with different viewing 
perspectives and angles. These are determined for the field observer by body height, 
which provides a predominant horizontal view of waterfowl and their characteristic 
features. UAS provide a vertical perspective of waterfowl as images with very high 
resolution of several millimeters, depending on the camera sensor and flight altitude. 
These different viewing angles and perspectives can be seen as complementary to 
identify waterfowl species characteristics. In the annotation process, the availability of 
the vertical view on waterfowl are another challenge for domain experts, as they are 
currently used to identify waterfowl characteristics only from the horizontal side view. 
(2) UAS provide an excellent overview of a project area, whereas field observers are 
clearly limited by accessibility as well as by the size, morphological characteristics, and 
vegetation structure of the shoreline of the water body. The larger and more complex 
the project area is, the more significant is the advantage of the UAS approach to cover 
large areas, large parts of which are inaccessible from the ground. (3) For annotation 
and ML classification, a project-area-specific waterfowl taxonomy was defined in close 
collaboration with domain experts. Non-experts are able to recognize the same amount 
and number of easily identifiable waterfowl as domain experts, such as “duck” and 
“swan,” as well as “waterfowl” in general. However, only experienced domain experts 
are able to annotate waterfowl at the subspecies level. The digital annotation process 
and workflow also allow any waterfowl that could not be identified by non-experts to be 
forwarded to a domain expert. With this approach, the general distribution of “waterfowl” 
can be documented in a first step, with a refinement of the species classification by 
experts in a second follow-up procedure. (4) The quality of the ML classification depends 
strongly on the amount and quality of the training data. Here, the level of species taxonomy 
is important to consider, because for each level of species taxonomy, a sufficient amount 
of training data must be available. It can be clearly seen that the performance of the ML 
model decreases significantly as the number and level of species hierarchy increases. 
(5) After completing the training and validation stage, the pipeline moved to the map 
projection stage. Here, we constructed a projection model and pipeline to visualize the 
YOLOv5 detections on a map. This spatial representation of the detected birds closes the 
loop and spatially represents the ML results on a map. Thus, not only the pure number 

Table 6: Comparison 
of field observations 
versus ML detection 
and classification 
accuracy. Blue: 
Annotated labels by 
non-expert laymen 
and domain experts 
and the related ML 
results; Green: Results 
achieved by expert field 
survey

Tabelle 6: Vergleich  
der Feldbeobachtungen 
mit der ML-Erkennungs- 
und Klassifizierungs-
genauigkeit. Blau: Von 
Laien und Fachleuten 
kommentierte Beschrif-
tungen und die entspre-
chenden ML-Ergeb-
nisse; Grün: Ergebnisse 
der Feldbeobachtung 
durch Experten

Tab. 6
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of observed waterbird classes in tabular form, which is a typical result of traditional 
surveys, but also where these classes are observed, are some of the most promising 
results of this approach for a comprehensive understanding of the spatial distribution 
and spatial patterns of waterfowl and their geographic context to the habitat. Finally, (6) 
digital UAS data such as the mission plan and the captured images represent a geo-
referenced spatiotemporal representation and documentation of the project area with an 
explicit time stamp of the survey performed. Such digital data can now be further used 
to build a digital archive for quality assurance and documentation and thus contribute 
as a thematic building block to a more comprehensive spatial data infrastructure for 
environmental monitoring of waterfowl and related habitats.

CONCLUSION AND FUTURE WORK

The results of this study demonstrated the potential effectiveness of the proposed pipeline 
for automated, non-invasive waterfowl detection from UAS imagery. By integrating 
data acquisition, pre-processing, AI training and validation, and projection, we made 
progress toward accurate and reliable waterfowl detection and classification. Despite 
limitations such as the controlled environment of the UAS mission and the focus on two 
specific classes of waterfowl, the study provides valuable insights for improved wildlife 
management, conservation, and habitat mapping by taking advantage of new digital 
technologies.
This framework may be expanded in the future to detect and classify additional waterfowl 
species or multiple classes simultaneously. Expanding the framework requires careful 
consideration of several factors. First, it is important to prioritize target species based 
on ecological relevance, conservation status, and data availability. Second, developing 
robust object detection and classification models for new species requires the collection 
and annotation of high-quality training data. In addition, training data augmentation offers 
new ways to increase the amount of training data. This involves the automatic modification 
of captured images - such as rotating, adjusting brightness, adding noise, etc. - to create a 
larger and more diverse set of training data. Third, exploring transfer learning techniques 
can help leverage knowledge from existing models to accelerate development of models 
for new species. Spatial distribution data generated by Labelbox provide a basis for in-
depth ecological analysis and conservation planning. By combining this information with 
other environmental factors captured in the UAS imagery (e.g., habitat type, water bodies, 
land use and land cover), it is possible to identify important waterfowl habitat, migration 
patterns, and potential threats. In addition, the ability to conduct collaborative mapping 
helps build a community-driven approach to conservation and enables better monitoring 
of waterfowl populations.
The discrepancy between expert and non-expert annotations underscores the challenges 
inherent in waterfowl monitoring projects, especially in complex areas such as species 
identification. While non-expert laypersons were able to differentiate between ducks 
and swans, their limited taxonomic knowledge likely hindered their ability to accurately 
classify other waterfowl species or to further classify duck or swan species. This suggests 
that while non-expert annotation can be a valuable tool for data collection, careful quality 
control measures and expert validation are essential to ensure data reliability and for 
future scaling and expansion of such a methodology.
In addition, evaluating the performance of the proposed pipeline in different environments 
and under different conditions would increase its robustness and generalizability. High-
resolution UAS imagery also adds value by digitally documenting the current state of the 
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environment at the time of the flight. Researchers and volunteers can more accurately 
count birds from the imagery and refer back to the imagery if questions arise later. The 
images also provide a wealth of contextual information (e.g., vegetation condition/type, 
water levels, climatic conditions, etc.) that would be difficult to replicate with field surveys. 
Last but not least, close collaboration between domain experts, UAS and ML researchers 
throughout the project is a key success factor, starting with user-centered and domain-
specific requirements analysis, through training and annotation, to results evaluation and 
validation [19].
The presented framework provides a foundation to support traditional waterbird 
surveys with new and innovative methods and provides promising challenges for further 
interdisciplinary research and development of automated waterbird detection systems 
using UAS imagery in Carinthia and beyond.
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